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RECOGNIZING UNITS IN NUMBER FIELDS 

GUOQIANG GE 

ABSTRACT. We present a deterministic polynomial-time algorithm that decides 
whether a power product IlkI yn' is a unit in the ring of integers of K , where 
K is a number field, yi are nonzero elements of K and ni are rational integers. 
The main algorithm is based on the factor refinement method for ideals, which 
might be of independent interest. 

1. INTRODUCTION 

A number field K is a finite field extension of the field Q of rational numbers 
([3, 5, 8, 12]). Denote by a the ring of integers of K and by M* the unit 
group of &. The main result of the present paper is as follows. 

Theorem 1.1. There exists a polynomial-time algorithm that, given a number 
field K, nonzero elements Y1, ..., Yk of K and rational integers n, ... nk, 

decides whether the power product Hik_1 Y2 is in M. 

The proof of Theorem 1. 1 will be given in ?6. Theorem 1. 1 answers a question 
suggested by H. W. Lenstra, Jr. in the the survey article Algorithms in algebraic 
number theory ([9, Problem 5.2]). 

The problem of testing whether a power product is a unit arises from cal- 
culating the unit group &* of a number field K. It is conjectured that, for 
an infinite sequence of real quadratic fields, the total number of digits of the 
coefficients of e on a given basis of a over Z is as large as Al/2+o(l), where 
e is a fundamental unit and A is the discriminant of K. A different represen- 
tation for e is necessary since just writing down e on a given basis of a over 
Z may be both time- and space-consuming. The algorithms that are actually 
used for finding units suggest that it is better to represent units in a compact 
form such as a power product Hlk_ 2y' of small nonzero elements YI, ..., Yk 
of K with integer exponents n1, ..., nk. Theorem 1.1 provides an efficient 
method of recognizing units if elements of number fields are represented as 
power products. 

The algorithm on which the proof of our theorem is based depends on the use 
of basic ring theory. More specifically, Theorem 1.1 is obtained by the factor 
refinement method for ideals. If K = Q, it is easy to see that Theorem 1.1 can 
be obtained from the results in [2]. The essential idea of the factor refinement 

Received by the editor May 11, 1993. 
1991 Mathematics Subject Classification. Primary 1 lY16, 1 1Y40. 
Key words and phrases. Number field, units, algorithm. 

? 1994 American Mathematical Society 
0025-5718/94 $1.00 + $.25 per page 

377 



378 GUOQIANG GE 

method for integers ([2]) is as follows: given m = ab, compute d = gcd(a, b) 
and write m = (a/d) * (d2) * (bid), then continue this process until all factors 
are relatively prime. For the general number field K, we can efficiently calculate 
an order A in K. But we cannot assume that the computed order A is the 
ring of integers a of K, since finding the ring of integers of a given number 
field is not known to be computable in polynomial time (cf. [4, 6]). If a, b 
belong to the order A, then gcd(a, b) is not an element of A but is an ideal 
of A. The division of ideals of A cannot be carried out if the divisor is not 
an invertible ideal. On the other hand, if an ideal that is not invertible is found 
in the process of factor refinement, then an order B that is strictly larger than 
the order A can be found efficiently. This enlargement process will eventually 
stop after polynomially many steps. 

The structure of this paper is as follows. In ?2, we review some basic knowl- 
edge of algorithmic algebraic number theory. In ?3, we recall some basic ring 
theory that will be used later. In ?4, we give some estimates on the sizes of 
fractional ideals and overorders. In ?5, we give the factor refinement method 
for ideals of an order in a number field. The proof of Theorem 1.1 will be given 
in ?6. 

Algorithms presented in this paper are not necessarily efficient from a prac- 
tical point of view. Accordingly, I have not estimated the running time of the 
algorithms precisely. 

2. PRELIMINARIES 

In this section, we review some basic knowledge of algorithmic algebraic 
number theory. For more details, we refer to [9]. All rings in this paper are 
supposed to be commutative with a unit element, subrings contain the same 
unit element. 

A number field K of degree n is encoded as a ring. This amounts to giving 
a positive integer n, as well as a system of n3 rational numbers aijk with the 
property that there is a Q-vector space basis co,1, ... , (On of K over Q such 
that w1w1oj = kX=l aijkw()k for all i, j = 1,..., n. 

An order in K is a subring A of K of which the additive group is free of rank 
n. We will encode an order A in a number field K of degree n by specifying 
A as a ring, which amounts to giving a positive integer n and a system of n3 
integers Cijk with the property that there is a free abelian group basis el, .... 

en of A over Z such that eej = Zk=l Cijkek for all i, j = 1,.. , n . It is easy 
to see that the same data encoding A also encode K. Given a number field K 
as above, one can construct an order A in K efficiently. The discriminant AA 
of an order A with Z-basis eI, . .. , en is defined to be the determinant of the 
matrix (Tr(ejej))1jj, where Tr: K -* Q is the trace map. The discriminant of 
any order is a nonzero integer. 

Let A be an order in a number field K of degree n. By a fractional ideal 
of A we mean a finitely generated nonzero A-submodule of K. The additive 
group of a fractional ideal of A is isomorphic to Zn . A fractional ideal I of 
A is called an ideal of A if I is contained in A. An ideal I of an order A is 
encoded by an n x n matrix HI over Z in Hermite Normal Form ([4, 7, 11]) 
such that the rows of the matrix HI consist of a basis of I over Z. Since the 
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product of all diagonal entries in HI is the index of I in A, it follows that 
all entries of the matrix HI are bounded by the index (A: I). A fractional 
ideal J of A is given by means of a pair d, I, where d is the least positive 
integer such that dJ C A and I = dJ is an ideal of A of finite index. This 
representation is clearly unique. If I, J are fractional ideals of A, then we 
define I: J = {x E A: xJ C I}; this is also a fractional ideal of A. There are 
polynomial-time algorithms that given an order A and fractional ideals I, J 
of A determine I+J, I.J, InJ, and I: J (cf. [4, ?5]). 

By an overorder of A we mean a fractional ideal of A that is a subring of 
K. It is clear that any overorder of A contains A. If I is a fractional ideal 
of A, then I: I is an overorder of A. Every overorder B of A is an order 
in K, and it satisfies AA = AB(B: A)2. Overorders of A and their fractional 
ideals will be represented as fractional ideals of A. 

Among all orders in K there is a unique maximal one denoted by &, which 
is the integral closure of Z in K and is called the ring of integers of K. A 
subring A of a is an order in K if and only if it has finite additive index in 
M. The discriminant of a is also called the discriminant of K over Q, and 
denoted by AK . 

We will not give the precise meaning of the notions such as length of the 
encoding data, algorithm, running time, etc. For conventions concerning these 
notions we refer to [9, ?2]. If 0 is an object (e.g., a number field, an order, a 
fractional ideal, etc.), then by size(O) we denote the length of the data encoding 
0. An algorithm is said to be a polynomial-time algorithm if its running time 
is polynomially bounded by the size of its input. In this case we also say that 
the algorithm runs in polynomial time. 

3. BASIC RING THEORY 

In this section, we recall some basic ring theory that will be used later. For 
conventions, we refer to [1]. 

Let A be a domain with quotient field K, let I, J be fractional ideals of 
A. It is noted that in general I(J: I) may not be equal to J. We recall that 
a fractional ideal I of A is invertible if there exists a fractional ideal J of A 
such that I . J = A. 

Proposition 3.1. A fractional ideal I of A is invertible if and only if I(A: I) = 
A. In this case we have I(J: I) = J and J: I = J(A: I) for any fractional 
ideal J of A. 
Proof. The proof of the "if' part is obvious. For the "only if' part, let H be 
a fractional ideal of A such that IH = A. Let J be any fractional ideal of 
A; then x E J X xIH C J X xH c J: I X xIH c I(J: I) X x E I(J: I). 
Hence I(J: I) = J, in particular I(A: I) = A. Furthermore, J: I = 

(J:I).I(A:I)=J(A:I). * 

Remark 3.2. It is easy to see from Proposition 3.1 that if I is invertible, then 
its inverse is unique and is equal to A: I. For any fractional ideal I of A, we 
define I0 A and In = (A: I)-n if n is a negative integer. 

Proposition 3.3. Let A be a Noetherian one-dimensional domain, and let P be 
a nonzero prime ideal. Then A: P strictly contains A. 
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Proof: It is clear that A: P contains A. Pick a nonzero element x E P, 
and let H be the ideal generated by x. Since A is Noetherian, there exist 
prime ideals PI, ... , Pn such that H C Pi and rjn Pi C H. We may assume 
n is the smallest integer with these properties. Since rjn Pi C H C P and 
P is prime, there exists some k, 1 < k < n, such that Pk C P. In fact, 
we have Pk = P since A is one-dimensional. Pick a y E Hlik Pi \ H; then 
yP C I7= Pi C H = Ax. Hence, y/x E A: P but y/x f A. This proves the 
proposition. o 

Proposition 3.4. Let A be a domain, and H, I, J fractional ideals of A; then 
H: (I * J) = (H: I) J. 
Proof. x E H: (I E J) X xIJ C H X xJ c H: I X E (H: I): J. E 

Proposition 3.5. Let A be a Noetherian one-dimensional domain, and let I be 
a fractional ideal of A. Then I is invertible if and only if (A: I): (A: I) = A. 
Proof. By Proposition 3.4, we have (A : I): (A: I) = A: (I. (A I)). If I is 
invertible, then I (A: I) = A. Hence, (A: I): (A: I) = A: (I (A: I)) = 
A: A = A. If I is not invertible, then J = I(A: I) is a proper ideal of A. 
Let P be a maximal ideal of A containing J; then (A : I): (A: I) = A: (I. 
(A: I)) = A: J D A : P. Thus (A: I): (A: I) 5$ A, since A: P strictly 
contains A by Proposition 3.3. This proves Proposition 3.5. o 

Remark 3.6. The same result is proved in [4] for orders over principal ideal 
domains. For more details on this we refer to [4, ?2]. 

Proposition 3.7 (Krull-Akizuki Theorem). Let A be a Noetherian one-dimen- 
sional domain with field offractions K, let L be a finite algebraic extension 
field of K, and B a ring with A C B C L; then B is a Noetherian domain of 
dimension at most one. 
Proof. See [10, p. 84]. n 

Proposition 3.8. Every order in a number field is a Noetherian one-dimensional 
domain. 
Proof. This is an immediate corollary of the Krull-Akizuki Theorem, since the 
dimension of every order is at least one. n 
Proposition 3.9. Let A be an order in a number field, and let I be a fractional 
ideal of A. Then I is invertible if and only if the overorder (A : I): (A : I) of 
A equals A. 

Proof. This immediately follows from Proposition 3.5 and Proposition 3.8. n 

Proposition 3.10. Let A be a domain, let J1, ... , J, be proper invertible ideals 
of A such that Jj + Jj, = A for all j $1 j', let I= HlI<?< J?1J where ej E Z. 
Then I C A if and only if ej > 0 for all 1 < j <. 
Proof. The proof of the "if' part is obvious. For the "only if' part, it is enough 
to prove el > 0. Let P be a maximal ideal containing J,. Let H be any 
finitely generated fractional ideal of A; then (H-1 )p = (A : H)p = (Ap : Hp) = 
(Hp)-1 (cf. [1, Corollary 3.15]). So (Hn)p = (Hp)n for any n E Z. Thus, 
(Jjej)p = (Jjp )ej = Ap (j > 2), since invertible ideals are finitely generated and 
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Jj + P = A (j > 2). Therefore, 

Ap D Ip - Jej I INp (J=l) - (J1P)e1 

ij=l /p j=l 
Since J1p is a proper invertible ideal of Ap, we have el > 0. 

This proves Proposition 3.10. o 

Proposition 3.11. Let A be a domain, let J1, ... , J1 be proper invertible ideals 
of A such that Jj + Jju = A for all j 5$ j', let I =Hi?1i JJj ,where ej E Z. 
Then I = A if and only if ej = 0 for all 1 < j <l. 

Proof. This follows from Proposition 3.10 by considering I and I-. I 

Proposition 3.12. Let A be an order in a number field K, and let a be the ring 
of integers of K. If I is a proper ideal of A, then I6 is a proper ideal of M. 
Proof. Suppose that IA = M. Let P be a maximal ideal of A containing I; 
then PA = &. Localize at P; we get Pp&p = 6p. Since &p is a finitely 
generated Ap-module and Ap is a local ring with maximal ideal Pp, we have 
&p = 0 by Nakayama's Lemma (cf. [1, p. 21]). This is a contradiction. o 

4. BOUNDING SIZES 

Given a number field K as in ?2, we can efficiently find an order A in K. 
We will represent overorders of A and their fractional ideals as fractional ideals 
of A. In the following, we will give some estimates on the sizes of fractional 
ideals and overorders of A. 

Let I be a fractional ideal of A. Suppose d is the smallest positive integer 
such that dI C A. The index (A: dI) is the product of all main diagonal 
entries in the matrix representation HdI of the ideal dI. Each entry in the 
matrix HdI is bounded by a main diagonal entry. Hence, size(I) is polyno- 
mially equivalent to the length of the data encoding the integer d, the index 
(A: d) and the order A. 

Proposition 4.1. Let A be an order in a numberfield, and let B be any overorder 
of A. Then size(B) is bounded by a polynomialfunction of size(A). Further- 
more, if I is a fractional ideal of A, then size(IB) is bounded by a polynomial 
function of size(I) and size(A). 
Proof. Let B be an overorder of A, and let d be the smallest positive integer 
such that dB C A; then d divides IAAI since (B: A)B C A and (B: A) 
divides IAA I. On the other hand, the index (A: dB) divides (A: dA) = 
dn, since dA C dB C A. So (A: dB) divides IAAn. Therefore, size(B) 
is bounded by a polynomial function of size(A). Furthermore, size(IB) is 
bounded by a polynomial function of size(I) and size(A), since size(IB) is 
polynomially bounded by size(I) and size(B). o 

Proposition 4.2. Let A be an order in a number field, and let I be a fractional 
ideal of A such that I C M. Then log2(6: I6) is polynomially bounded by 
size(I) and size(A). 
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Proof. Let d be the smallest positive integer such that dI C A; then the index 
( : I<) < (&: I) < (& dI) = (& : A)(A : dI) < IAAI(A : dI). So 
log2(&: I6) is polynomially bounded by size(I) and size(A). o 

Proposition 4.3. Let A be an order in a number field, and let I be a fractional 
ideal of A such that I C &. Let J be any fractional ideal of A such that 
I C J c &. Then size(J) is bounded by a polynomial function of size(I) and 
size(A). 

Proof. Let d be the smallest positive integer such that d6 C A, let e be the 
smallest positive integer such that eJ C A, and let f be the smallest positive 
integer such that fI C A. Since dJ C d6 C A, we have that e divides d. 
So e < d < IAAI. The index (A: eJ) < (A: dJ) = (A: d&)(d&: dJ) 
< (A: dA)(&: J) < dn(6: fI) < dn(6: A)(A: fI) < IAAIn+1(A: fI). There- 
fore, size(J) is bounded by a polynomial function of size(I) and size(A). n 
Proposition 4.4. Let A be an order in a number field, and let C be an overorder 
of A. Suppose that Ii (1 < i < k) are ideals of C, Jj (1 < < 1) are proper 
ideals of C and ej (1 < j < 1) are positive integers such that 

1<i<k 1 <j<l 

Then 
I k 

?< Ze < 0log2( I) 
j=l i=l 

In particular, both 1 and Z= ej are polynomially bounded by k, size(Ij) 
(1 < i < k) and size(A). 

Proof. Since 

Ii = Je' 
1<i<k 1 <j<l 

we have 
fi Ii<= J (J&)eJ 

1<i<k 1 <?j<l 

Hence, 

rl ((&: Ii() =rI (&: Jjj&)e' 
1<i<k 1 <j<l 

By Proposition 3.12, Jj(& is a proper ideal of a (1 < j ? 1). Therefore, 

2 e< J (& - jj)eJ r1 ((v Ii6f). I < j<l 1 <i<k 

That is, 
I k 

Eej < E, 1092( i) 
j=1 i=1 

By Proposition 4.2, 1og2( : I6^) is polynomially bounded by size(I) (1 < i < 
k). Therefore, both 1 and Z>= ej are polynomially bounded by k, size(I) 
(1 < i < k) and size(A). This proves the proposition. n 
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5. FACTOR REFINEMENT 

In this section, we give the factor refinement algorithm for ideals of an or- 
der in a number field. For history and applications of the factor refinement 
technique, we refer to [2]. 

Algorithm 5.1. We describe an algorithm that, given an order A, an overorder 
B of A, and a fractional ideal I of B, determines an overorder C of A and 
an invertible fractional ideal J of C such that B C C and IC = J. 

The algorithm begins by putting C = B and J = I, then does the following. 
It calculates the overorder C' = (C J): (C: J) of A. If C' = C, the 
algorithm stops. Otherwise, it replaces C by C' and J by JC', then the 
algorithm iterates on the new C and J. 

Proposition 5.2. Given an order A, an overorder B of A, and a fractional ideal 
I of B, Algorithm 5.1 determines in polynomial time an overorder C of A and 
an invertible fractional ideal J of C such that B C C and IC = J. 
Proof. Algorithm 5.1 iterates at most log2 (: A) steps, since the index (C: A) 
increases by a factor of at least 2 in each step. Hence the number of iterating 
steps is bounded by lg2 IAA I. The running time of each step is bounded by a 
polynomial function of size(IC) and size(C), hence bounded by a polynomial 
function of size(I) and size(A) by Proposition 4.1. When the algorithm stops, 
we have (C: J): (C: J) = C. Thus, J is invertible in C by Proposition 3.9. 
This completes the proof of Proposition 5.2. o 

Algorithm 5.3. We describe an algorithm that, given an order A, an overorder 
B of A, and k proper ideals I, , . , Ik of B, determines an overorder C of 
A, proper invertible ideals J1, ... , J, of C, and positive integers ej ( 1 < j < 
1) such that B C C, Jj + Jj = C for all j 1$ j' and Hl<i<k IiC = H1l <J Ji 

Step 1. The algorithm begins by putting C0 = B. For each i = 1, ... , k 
we do the following. Applying Algorithm 5.1 to the ideal Ii and the overorder 
C11I of A, we find an overorder Ci of A and an invertible ideal IiCi. 

Step 2. Put C = Ck, J, = IiCk and ei = 1 (i =1, ..., k). The algorithm 
works with a set S of all pairs (hJj, ej) (j = 1, ... , 1) such that Hl<i<k IiC = 

H1j<<1 JZJ , where 1 is the cardinality of the set S and Jj (j = 1, ..., 1) are 
proper invertible ideals of C. 

Step 3. First the algorithm searches for two members (Jj, ej) and (Jj,, ej,) 
of the set S such that Jj + Jj, :$ C. If these cannot be found, the algorithm 
stops. Suppose that (Jj, ej) and (Jj,, ej,) can be found; it calculates H = 
J, + Ji, . Applying Algorithm 5.1 to C and its ideal H, we find an overorder 
C' D C of A and an invertible ideal H' of C' with H' = HC'. Replace C by 
C', H by H', and all Jj by JjC', then remove pairs (Jj, ej) and (Jj,, e1') 
from the set S and add the pairs (Jj : H, ej), (H, ej + e1), (Jj, : H, e1') to 
S except for those pairs containing C as their first entry. Next one iterates 
Step 3 on the new set S. 

This completes the description of the algorithm. 

Proposition 5.4. Given an order A, an overorder B of A, and k proper ideals 
I, ... , Ik of B, Algorithm 5.3 determines in polynomial time an overorder C 
of A, proper invertible ideals J1, . . . , J, of C and positive integers ej (1 < j < 1) 
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such that B C C, Jj + Jj, = C for all j $1 j', and Hl<i<kIiC = H1?j1 Jj' 
Moreover, there are nonnegative integers f;j (1 < i < k, 1 < j < 1) such that 

IC=HI< ? Jf' for i = 1, ...,k. 

Proof When the algorithm terminates, we clearly have B C C, Jj + Jj, = C 
for all j ]A j'. We also have Hl<i<k 1C = H1?<j<1 Jej' and IiC = 1<j<1 Jf'j 
for some nonnegative integers f;1 (1 < i < k, 1 <j < 1), since they hold at 
the start of Step 3 and they are preserved after each iteration in Step 3. 

Clearly, Step 1 and Step 2 can be done in polynomial time. 
We refer to the process of removing (Jj, ej) and (Jj,, ej,) from S and 

adding pairs (Jj: H, ej), (H, ej + ej,), (Jj,: H, ej,) to S as a refinement 
step. Let 

I 

m = Z(ej - 1). 
j=1 

We claim that m is increased by at least one after each refinement step. The 
contribution of (Jj, ej) and (Jj,, ej,) to m is ej + ej, - 2 before removing 
them. After adding (Jj: H, ej), (H, ej + e1), (Jj,: H, ej,) to S, the contri- 
bution of these pairs is: 

2ej + 2ej, - 3 if Jj: H 5$ C and Jj,: H 5$ C; 
2ej+ej,-2 if Jj:H5$C and Jj,:H=C; 
ej +2ej,-2 if Jj:H=C and Jj,:H5$C; 
ej+ej, -1 if Jj:H=C and Jj,:H=C. 

In all cases the contribution to m is greater than ej + ej, - 2. 
Since each refinement step preserves 

rI Ii C = rI zJX, 
1<i<k 1 <?<? 

we have by Proposition 4.4 that 
1 k 

m < Zej < Elog2(&: Ii4) 
j=1 1=1 

which is polynomially bounded by k, size(II), ..., size(Ik) and size(A). 
Therefore, the number of refinement steps is bounded by a polynomial function 
of k, size(Ih), ... , size(Ik), and size(A). 

All the fractional ideals (Jj and H, etc.) appearing in Step 3 have their 
sizes uniformly bounded by a polynomial function of size(II), ... , size(Ik) 
and size(A) by Proposition 4.3, since each of them is contained in a and 
contains at least one Is for some i E { 1, ... , k}. Since the cardinality / of 
the set S is polynomially bounded at any stage, each iteration in Step 3 runs 
in polynomial time. 

Therefore, Algorithm 5.3 runs in polynomial time. n 

Remark 5.5. The properness assumption on ideals I,, . . , Ik in Algorithm 5.3 
and Proposition 5.4 is not necessary since we can apply Algorithm 5.3 to the 
ideals Ii that are proper in B and let f1j = 0 for those Ii that are equal to 
B. We will drop this assumption in the Factor Refinement Algorithm below. 
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Algorithm 5.6 (Factor Refinement Algorithm). Given an order A of a number 
field K, an overorder B of A, and ideals II, ... , Ik of B. We describe 
an algorithm that determines an overorder C of A, proper invertible ideals 

, ..., J1 of C, and nonnegative integers fij (1 < i < k, 1 < j < 1) such 

that B C C, Jj + Jj, = C for all j $1 j', and iC= H?I <j<l J/fii for i= 
1,... , k. 

Applying Algorithm 5.3 to order A, overorder B, and proper ideals Il, ... 

Ik of B, we find an overorder C of A and proper invertible ideals J1, . .. , J, 
of C and positive integers el, ... , el such that B C C, Jj + Jj, = C for all 
j 7$ j' and Hll<i<k IiC = fll< j<l J'j . Moreover, there are nonnegative integers 

fij (1 <i<k,1 < j<l1) suchthat IiC=Hl<j<lJfij for 1=1,... ,k. 

For each i = 1, ..., k, put Hi = Ii C, then do the following: For each 
j = 1, ... , l,let fij = O, if Hi c Jj, then replace Hi by Hi: Jj and increase 
fij by 1 and continue the division process. Otherwise advance to the next j. 
Proposition 5.7. Given an order A, an overorder B of A, and ideals I,, . .. , Ik 
of B, Algorithm 5.6 determines in polynomial time an overorder C of A, proper 
invertible ideals J1, ... , J1 of C, and nonnegative integers fij (1 < i < k, 1 < 

1?<1I) such that B c C, J3 + Ji, = C for all j $1 j', and IC = Hl<j<l if 
for 1=1,... ,k. 

Proof. The number of division steps is 

k I I 

E E flj= E ey, 
i=l j=l j=l 

which is polynomially bounded. By Proposition 4.3, all the fractional ideals 
( Jj and Hi, etc.) appearing in the division process have their sizes uniformly 
bounded by a polynomial function of size(II), ... , size(Ik) and size(A), since 
each of them is contained in a and contains at least one Is for some i E 
{ 1, ... , k} . So the running time of each division step is polynomially bounded. 
Therefore, Algorithm 5.6 runs in polynomial time. 

This proves the proposition. n 

6. PROOF OF THEOREM 1.1 

We prove Theorem 1.1 in this section. 

Proposition 6.1. There is a polynomial-time algorithm that, given an order A 
and a nonzero element y E A, determines the ideal I of A generated by y. 

Proof. We first describe the algorithm. Let {ei}?<i<n be a Z-basis of A such 
that ejej = n=l ckek, where Cilk (1 < 1, j, k < n) are the data encoding 
the order A (cf. ?2). Let y = EZn Iriei, where ri E Z for i = 1,..., n. 
Calculate a matrix M = (mij) such that yei = X:n - m3jej for i = 1, ... , 

where Mkl = Zn7I ricikl for k, 1 = 1, ... , n. Find the Hermite Normal Form 
H = (hij) (cf. [4, 7, 11]) of the matrix M; then H is the unique matrix 
representation of the ideal I generated by y. 

Let U = (uij) be the unique n x n unimodular matrix such that H = 

UM. Let t, = EnI7 uij(yej) for i = 1, ..., n; then t, = En I hijej for i = 
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1, ... , n. Since {yei}j<j?n is a Z-basis of I and U is unimodular, {ij}l<i<n 
is also a Z-basis of I. Therefore, H is the unique matrix representation of 
the ideal I, since the matrix H is in Hermite Normal Form. It is clear that 
the algorithm runs in polynomial time. This proves the proposition. o 

Proposition 6.2. There is a polynomial-time algorithm that, given an order A 
and nonzero elements Y1, ... , Yk E A, determines an overorder C of A, proper 
invertible ideals J1, . .. , J1 of C and nonnegative integers f;j (1 < i < k 1 < 

j< 1) such that Jj + Jj, = C for all j :$ j' and yiC = flHI?Jfij for 
i-1~k. i=l,...,k 

Proof. Compute ideals Ii = yiA by applying the algorithm in Proposition 6.1 
to each yi E A (i = 1, ..., k). Applying the Factor Refinement Algorithm 
(Algorithm 5.6) to the ideals Ii , we find an overorder C of A, proper invertible 
ideals J1, ... , J1 of C, and nonnegative integers fij (1 < i < k, 1 < j < 1) 

such that Jj + Jj, = C for all j :$ j' and yiC = IiC = Hll<j<J Jf;j for 
i=1,... , k. 

Apparently the algorithm runs in polynomial time since both the algorithm 
in Proposition 6.1 and the Factor Refinement Algorithm run in polynomial 
time. o 

Proposition 6.3. Let A be an order in a number field, and let Yi, ..., Yk be 
nonzero elements in A. Let C be an overorder of A, let J1, ... , J1 be proper 
invertible ideals of C, and let f; (1 < i < k, 1 < j < 1) be nonnegative 

integers such that Jj + Jj, = C for all j $1 j' and yiC = H1<j<l Jf' for 

i = 1, ... , k. Let n1, ... , nk be integers; then e = fik_1 Ynin e * if and 

only if Ek f jni = 0 for j =1,... ,l, and e = flk Y y E a if and only if 

Eik I f jni > 0 for j = 1, ...,1 

Proof. Since 

k k I n, I 

eC C=(yiC)n' - I I I J(fj =I J.lfnl, 
i=l i=1 'y=1, j=1 

we have 

E& = fJ(Jj&)EZ Jin 
j=1 

By Proposition 3.12, Jj& is a proper ideal of a for j = 1,... ,1. We also 
have Jj/ + Jj,64 = a for all j $A j', since Jj + Jj, = C. Hence, A" = a if 
and only if Ek> I fijni = 0 for j = 1, ..., 1 by Proposition 3.11, and c& C A 
if and only if Ek I fijni > 0 for j = 1, ..., 1 by Proposition 3.10. 

This proves the proposition. o 

It is not difficult to see that Theorem 1.1 is equivalent to the following theo- 
rem up to a polynomial-time transformation. Therefore, it is enough to prove: 

Theorem 6.4. There is a polynomial-time algorithm that, given an order A, 
nonzero elements Y1I, . . . , Yk E A and integers n1, .I. , nk E Z, decides whether 
C = rik1 yni is a unit, i.e., belongs to &*. 
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Proof. Applying the algorithm in Proposition 6.2 to order A and Yi, ...Yk E 
A, we find nonnegative integers fij (i = 1, ..., k, j = 1, ..., 1) with prop- 
erties stated in Proposition 6.2. 

Compute EkI f3ijni for each j = 1, ..., 1. By Proposition 6.3, if all of 
them are zero, then e is a unit, otherwise e is not a unit. 

Clearly this can be done in polynomial time. This completes the proof. o 
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